ELSEVIER

Sequences of Levy transformations and multi-Wroński determinant solutions of the Darboux system

Q.P. Liu *, Manuel Mañas ${ }^{1}$
Departamento de Física Teórica, Universidad Complutense, E28040-Madrid, Spain

Received 20 August 1997

Abstract

Sequences of Levy transformations for the Darboux system of conjugates nets in multidimensions are studied. We show that after a suitable number of Levy transformations, with at least a Levy transformation in each direction, we get closed formulae in terms of multi-Wroński determinants. These formulae are for the tangent vectors, Lamé coefficients, rotation coefficients and points of the surface. © 1998 Elsevier Science B.V.

Subj. Class.: Dynamical systems
1991 MSC: 35Q51
Keywords: Levy transformations; Multi-Wroński determinants; Darboux system

1.

The interaction between soliton theory and geometry is a growing subject. In fact, many systems that appear by geometrical considerations have been studied independently in soliton theory; well-known examples include the Liouville and sine-Gordon equations which characterize minimal and pseudo-spherical surfaces, respectively. Another relevant case is given by the Darboux equations that were solved 12 years ago in its matrix generalization, using the $\bar{\partial}$-dressing, by Zakharov and Manakov [14].

In this note we want to iterate a transformation that preserves the Darboux equations which is known as Levy transformation [10].

[^0]2.

The Darboux equations

$$
\begin{equation*}
\frac{\partial \beta_{i j}}{\partial u_{k}}=\beta_{i k} \beta_{k j}, \quad i, j, k=1, \ldots, N, \quad i \neq j \neq k \neq i \tag{1}
\end{equation*}
$$

for the $N(N-1)$ functions $\left\{\beta_{i j}\right\}_{i, j=1, \ldots, N ; i \neq j}$ of u_{1}, \ldots, u_{N}, characterize N-dimensional submanifolds of $\mathbb{R}^{P}, N \leq P$, parametrized by conjugate coordinate systems [2,4], and are the compatibility conditions of the following linear system:

$$
\begin{equation*}
\frac{\partial \boldsymbol{X}_{j}}{\partial u_{i}}=\beta_{j i} X_{i}, \quad i, j=1, \ldots, N, \quad i \neq j \tag{2}
\end{equation*}
$$

involving suitable P-dimensional vectors \boldsymbol{X}_{i}, tangent to the coordinate lines. The so-called Lamé coefficients satisfy

$$
\begin{equation*}
\frac{\partial H_{j}}{\partial u_{i}}=\beta_{i j} H_{i}, \quad i, j=1, \ldots, N, \quad i \neq j \tag{3}
\end{equation*}
$$

and the points of the surface \boldsymbol{x} can be found by means of

$$
\begin{equation*}
\frac{\partial \boldsymbol{x}}{\partial u_{i}}=\boldsymbol{X}_{i} H_{i}, \quad i=1, \ldots, N \tag{4}
\end{equation*}
$$

which is equivalent to the more standard Laplace equation

$$
\frac{\partial^{2} x}{\partial u_{i} \partial u_{j}}=\frac{\partial \ln H_{i}}{\partial u_{j}} \frac{\partial x}{\partial u_{i}}+\frac{\partial \ln H_{j}}{\partial u_{i}} \frac{\partial x}{\partial u_{j}}, \quad i, j=1, \ldots, N, i \neq j
$$

A Darboux type transformation for this system was found by Levy [5,9,10]. In fact, in [10] the transformation is constructed only for two-dimensional surfaces, $N=2$, being the Darboux equations in this case trivial and Levy only presents the transformation for the points of the surface. However, in [9] the Levy transformation is extended to the first nontrivial case of Darboux equations, namely $N=3$. The extension to arbitrary N is straightforward and reads as follows. Given a solution ξ_{j} of

$$
\frac{\partial \xi_{j}}{\partial u_{k}}=\beta_{j k} \xi_{k}
$$

for each of the N possible directions in the coordinate space there is a corresponding Levy transformation that reads for the i th case:

$$
\begin{aligned}
& \boldsymbol{x}[1]=\boldsymbol{x}-\frac{\Omega(\xi, H)}{\xi_{i}} \boldsymbol{X}_{i}, \\
& \boldsymbol{X}_{i}[1]=\frac{1}{\xi_{i}}\left(\xi_{i} \frac{\partial \boldsymbol{X}_{i}}{\partial u_{i}}-\frac{\partial \xi_{i}}{\partial u_{i}} \boldsymbol{X}_{i}\right), \quad \boldsymbol{X}_{k}[1]=\frac{1}{\xi_{i}}\left(\xi_{i} X_{k}-\xi_{k} \boldsymbol{X}_{i}\right), \\
& H_{i}[1]=-\frac{\Omega(\xi, H)}{\xi_{i}}, \quad H_{k}[1]=H_{k}-\beta_{i k} \frac{\Omega(\xi, H)}{\xi_{i}},
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{i k}[1]=-\frac{1}{\xi_{i}}\left(\beta_{i k} \frac{\partial \xi_{i}}{\partial u_{i}}-\xi_{i} \frac{\partial \beta_{i k}}{\partial u_{i}}\right) \\
& \beta_{k i}[1]=-\frac{\xi_{k}}{\xi_{i}}, \quad \beta_{k l}[1]=-\frac{\xi_{k} \beta_{i l}-\xi_{i} \beta_{k l}}{\xi_{i}}
\end{aligned}
$$

where $k, l=1, \ldots, N$ with $k \neq l \neq i$. Here we have introduced the potential $\Omega(\xi, H)$ defined by

$$
\frac{\partial \Omega(\xi, H)}{\partial u_{k}}=\xi_{k} H_{k}, \quad k=1, \ldots, N
$$

which are compatible equations by means of the equations satisfied by ξ_{k} and H_{k}.

3.

Using Crum type ideas [1] one can iterate this Levy transformation. However now there is a difference with respect to the iteration of the Darboux transformation of the onedimensional Schrödinger equation: we have N different elementary Levy's transformations $\left\{\mathcal{L}_{i}\right\}_{i=1, \ldots, N}$.

If one performs less than N iterations or more than N iterations, say $\mathcal{L}_{i_{1}} \cdots \mathcal{L}_{i_{M}}$ with $\{1, \ldots, N\} \not \subset\left\{i_{1}, \ldots, i_{M}\right\}$, one gets nonsymmetric formulae in which the initial β 's and its derivatives appear explicitly. However, if in the latter case we have $\{1, \ldots, N\} \subset$ $\left\{i_{1}, \ldots, i_{M}\right\}$, that is we have performed at least one Levy transformation in each spatial direction we obtain formulae only in terms of Wroński determinants of the wave functions with no β 's appearing explicitly.

To present our main result, we introduce some convenient notations. First we define $\partial_{i}:=\partial / \partial u_{i}$. Second, for any set of functions $\left\{\xi_{j}^{i}\right\}_{i=1, \ldots, M ; j=1 \ldots, N}$ we denote by $W_{j}(n)$ the following Wroński matrix:

$$
W_{j}(n):=W_{j}\left(\xi_{j}^{1}, \ldots, \xi_{j}^{M}\right):=\left(\begin{array}{cccc}
\xi_{j}^{1} & \xi_{j}^{2} & \ldots & \xi_{j}^{M} \\
\partial_{j} \xi_{j}^{1} & \partial_{j} \xi_{j}^{2} & \ldots & \partial_{j} \xi_{j}^{M} \\
\vdots & \vdots & & \vdots \\
\partial_{j}^{n-1} \xi_{j}^{1} & \partial_{j}^{n-1} \xi_{j}^{2} & \ldots & \partial_{j}^{n-1} \xi_{j}^{M}
\end{array}\right)
$$

For any partition of $M=m_{1}+m_{2}+\ldots+m_{N}$, we construct a multi-Wroński matrix

$$
\mathcal{W}:=\left(\begin{array}{c}
W_{1}\left(m_{1}\right) \\
W_{2}\left(m_{2}\right) \\
\vdots \\
W_{N}\left(m_{N}\right)
\end{array}\right)
$$

Now we are ready to present the following:

Theorem. Given M functions $\left\{\xi_{i}^{j}\right\}_{i=1, \ldots, N ; j=1, \ldots, M}$ and $X_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{P}\right)^{t}, i=1, \ldots$, N, all of them solutions of (2) and $H_{i}, i=1, \ldots, N$, solutions of (3), for given $\beta_{i j}$, then new solutions $\boldsymbol{X}_{i}[M], H_{i}[M]$ and $\beta_{i j}[M]$ are defined by:

$$
X_{i}^{l}[M]=\frac{\left|\mathbb{X}_{i}^{l}\right|}{|\mathcal{W}|}, \quad H_{i}[M]=-\frac{\left|\mathbb{H}_{i}\right|}{|\mathcal{W}|}, \quad \beta_{i j}[M]=-\frac{\left|\mathcal{W}_{i j}\right|}{|\mathcal{W}|}
$$

where

$$
\mathbb{X}_{i}^{l}=\left(\begin{array}{cc}
\mathcal{W} & \boldsymbol{v}^{l} \\
\partial_{i}^{m_{i}} \xi_{i} & \partial_{i}^{m_{i}} X_{i}^{l}
\end{array}\right)
$$

with

$$
\begin{aligned}
\boldsymbol{v}^{l} & :=\left(v_{1}^{l}, \ldots, \boldsymbol{v}_{N}^{l}\right)^{t}, \quad \text { being } \boldsymbol{v}_{k}^{l}:=\left(X_{k}^{l}, \partial_{k} X_{k}^{l}, \ldots, \partial_{k}^{m_{k}-1} X_{k}^{l}\right), \\
\boldsymbol{\xi}_{i} & :=\left(\xi_{i}^{1}, \ldots, \xi_{i}^{M}\right),
\end{aligned}
$$

\mathbb{H}_{i} is obtained from \mathcal{W} by replacing the last row of the ith block by $\Omega(\xi, H)$ and $\mathcal{W}_{i j}$ by replacing the last row of the j th block by $\partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}$. In the partition $M=m_{1}+m_{2}+\ldots+m_{N}$ we need $m_{i} \in \mathbb{N}$.

Moreover, for the transformed surface we have the parametrization

$$
\boldsymbol{x}[M]=\frac{1}{|\mathcal{W}|}\left(\begin{array}{ll}
\mathcal{W} & \boldsymbol{v}^{1} \\
\Omega(\boldsymbol{\xi}, H) & x^{1}
\end{array}\left|, \ldots,\left|\begin{array}{ll}
\mathcal{W} & \boldsymbol{v}^{P} \\
\Omega(\boldsymbol{\xi}, H) & x^{P}
\end{array}\right|\right)^{t}\right.
$$

Proof. The proof that follows is inspired by Refs. [6,11], however is extended to this multicomponent system and we give a more detailed account.

We first need to show that

$$
\partial_{k} X_{i}^{l}[M]=\beta_{i k}[M] X_{k}^{l}[M]
$$

or equivalently that the following bilinear equation holds:

$$
|\mathcal{W}| \partial_{k}\left|\mathbb{X}_{i}^{l}\right|-\left|\mathbb{X}_{i}^{l}\right| \partial_{k}|\mathcal{W}|+\left|\mathbb{X}_{k}^{l}\right|\left|\mathcal{W}_{i k}\right|=0
$$

To this aim we consider the following $(2 M+1) \times(2 M+1)$ square matrix:

$$
\mathcal{A}_{i k}^{l}:=\left(\begin{array}{ccccc}
A_{k} & 0 & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}^{t} \\
0 & A_{k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}^{t} \\
0 & \boldsymbol{b}_{k}^{l} & \partial_{k}^{m_{k}-1} X_{k}^{l} & \partial_{k}^{m_{k}} X_{k}^{l} & \partial_{i}^{m_{i}} X_{i}^{l}
\end{array}\right),
$$

where A_{k} is a $M \times(M-1)$ rectangular matrix

$$
\left(A_{k}\right)^{t}:=\left(\begin{array}{c}
W_{1}\left(m_{1}\right) \\
\vdots \\
\hat{W}_{k}\left(m_{k}\right) \\
\vdots \\
W_{N}\left(m_{N}\right)
\end{array}\right)
$$

with $\hat{W}_{k}\left(m_{k}\right)$ obtained from $W_{k}\left(m_{k}\right)$ by deleting the last row, and

$$
\boldsymbol{b}_{k}^{l}=\left(\boldsymbol{v}_{1}^{l}, \ldots, \hat{\boldsymbol{v}}_{k}^{l}, \ldots, \boldsymbol{v}_{N}^{l}\right)
$$

with \hat{v}_{k}^{l} obtained by deleting the last element in v_{k}^{l}.
We now recall Laplace's general expansion theorem [12] that we shall use in this proof, this theorem allows the computation of an $n \times n$ matrix $A:=\left(a_{i j}\right)$ as follows:

$$
\begin{aligned}
\operatorname{det} A= & \sum_{\substack{\rho_{1} \ldots, \rho_{r} \\
\rho_{1}<\ldots<\rho_{r}}}(-1)^{\gamma_{1}+\cdots+\gamma_{r}+\rho_{1}+\cdots+\rho_{r}} \\
& \times\left|\begin{array}{cccc}
a_{\gamma_{1} \rho_{1}} & a_{\gamma_{1} \rho_{2}} & \ldots & a_{\gamma_{1} \rho_{r}} \\
a_{\gamma_{2} \rho_{1}} & a_{\gamma_{2} \rho_{2}} & \ldots & a_{\gamma_{2} \rho_{r}} \\
\vdots & \vdots & & \vdots \\
a_{\gamma_{r} \rho_{1}} & a_{\gamma_{r} \rho_{2}} & \ldots & a_{\gamma_{r} \rho_{r}}
\end{array}\right| \times\left|\begin{array}{cccc}
a_{\delta_{1} \sigma_{1}} & a_{\delta_{1} \sigma_{2}} & \ldots & a_{\delta_{1} \sigma_{s}} \\
a_{\delta_{2} \sigma_{1}} & a_{\delta_{2} \sigma_{2}} & \ldots & a_{\delta_{2} \sigma_{s}} \\
\vdots & \vdots & & \vdots \\
a_{\delta_{s} \sigma_{1}} & a_{\delta_{s} \sigma_{2}} & \ldots & a_{\delta_{s} \sigma_{s}}
\end{array}\right|,
\end{aligned}
$$

where $r+s=n$ and

$$
\left(\gamma_{1}, \ldots, \gamma_{r}, \delta_{1}, \ldots, \delta_{s}\right)=(1, \ldots, n), \quad\left(\rho_{1}, \ldots, \rho_{r}, \sigma_{1}, \ldots, \sigma_{s}\right)=(1, \ldots, n)
$$

up to permutations.
Let us now expand the determinant of the matrix $\mathcal{A}_{i k}^{l}$ by means of Laplace's general expansion theorem. Here, we take $r=M, \gamma_{i}=i$ and $\delta_{i}=M+i(i=1, \ldots, M)$. It is easy to see that

$$
\begin{aligned}
\left|\mathcal{A}_{i k}^{l}\right|=(-1)^{M-1} & \left(\begin{array}{ll}
\mid A_{k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t}\left|\times\left|\begin{array}{ccc}
A_{k} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}^{t} \\
\boldsymbol{b}_{k}^{l} & \partial_{k}^{m_{k}} X_{k}^{l} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}
\end{array}\right|\right. \\
& -\mid A_{k} \\
\partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t}\left|\times\left|\begin{array}{lll}
A_{k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}^{t} \\
\boldsymbol{b}_{k}^{l} & \partial_{k}^{m_{k}-1} \boldsymbol{X}_{k}^{l} & \partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}
\end{array}\right|\right. \\
& +\mid A_{k} \\
\partial_{i}^{m_{i}} \boldsymbol{\xi}_{i}^{t}\left|\times\left|\begin{array}{ccc}
A_{k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{k}} \boldsymbol{\xi}_{i}^{t} \\
\boldsymbol{b}_{k}^{l} & \partial_{k}^{m_{k}-1} \boldsymbol{X}_{k}^{l} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}
\end{array}\right|\right),
\end{array},\right.
\end{aligned}
$$

expression that after an even number of permutations of columns and transposition reads

$$
\left|\mathcal{A}_{i k}^{l}\right|=(-1)^{M-1}\left[|\mathcal{W}| \partial_{k}\left|\mathbb{X}_{i}^{l}\right|-\left|\mathbb{X}_{i}^{l}\right| \partial_{k}|\mathcal{W}|+\left|\mathbb{X}_{k}^{l}\right|\left|\mathcal{W}_{i k}\right|\right] .
$$

But Laplace's theorem also implies $\left|\mathcal{A}_{i k}^{l}\right|=0$, to see this we just use the standard version of this theorem and expand the determinant with respect to its last row. In doing so we get a sum in which all terms vanish, this last statement follows again from Laplace's general expansion theorem. This gives the desired result.

Next we prove that

$$
\partial_{k} H_{i}[M]=\beta_{k i}[M] H_{k}[M],
$$

or equivalently that the following bilinear equation holds

$$
|\mathcal{W}| \partial_{k}\left|\mathbb{H}_{i}\right|-\left|\mathbb{H}_{i}\right| \partial_{k} \mathcal{W}\left|+\left|\mathcal{W}_{k i}\right|\right| \mathbb{H}_{k} \mid=0 .
$$

As before this relation is a consequence of Laplace's general expansion theorem. For this aim we consider the $2 M \times 2 M$ square matrix:

$$
\mathcal{B}_{i k}:=\left(\begin{array}{llllll}
B_{i k} & 0 & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}-1} \boldsymbol{\xi}_{i}^{t} & \Omega(\boldsymbol{\xi}, H)^{t} \\
0 & B_{i k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \partial_{i}^{m_{i}-1} \boldsymbol{\xi}_{i}^{t} & \Omega(\boldsymbol{\xi}, H)^{t}
\end{array}\right),
$$

where $B_{i k}$ is a $M \times(M-2)$ rectangular matrix

$$
\left(B_{i k}\right)^{t}:=\left(\begin{array}{c}
W_{1}\left(m_{1}\right) \\
\vdots \\
\hat{W}_{i}\left(m_{i}\right) \\
\vdots \\
\hat{W}_{k}\left(m_{k}\right) \\
\vdots \\
W_{N}\left(m_{N}\right)
\end{array}\right) .
$$

Using the version of the Laplace expansion appearing in [6, Eq. (3.3)] we get the desired bilinear formula.

Finally, we prove the formula for $x^{l}[M]=\Omega\left(X^{l}[M], H[M]\right)$ (see 4). This is achieved by considering the following $(2 M+1) \times(2 M+1)$ square matrix:

$$
\mathcal{C}_{k k}^{l}:=\left(\begin{array}{ccccc}
A_{k} & 0 & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \Omega(\boldsymbol{\xi}, H)^{t} \\
0 & A_{k} & \partial_{k}^{m_{k}-1} \boldsymbol{\xi}_{k}^{t} & \partial_{k}^{m_{k}} \boldsymbol{\xi}_{k}^{t} & \Omega(\boldsymbol{\xi}, H)^{t} \\
0 & \boldsymbol{b}_{k}^{l} & \partial_{k}^{m_{k}-1} X_{k}^{l} & \partial_{k}^{m_{k}} X_{k}^{l} & \Omega\left(\boldsymbol{X}^{l}, H\right)
\end{array}\right),
$$

and using that $x^{l}=\Omega\left(X^{l}, H\right)$ and Laplace's general expansion theorem.

4.

Sequences of Levy transformations for two-dimensional surfaces have already been studied in [7,13] see also [5]. Let us remark that the Darboux equations are trivial in this case and that they only consider the points in the surface. Up to a factor $\left(\left(H_{1} \ldots H_{N}|\mathcal{W}|\right)^{-1}\right)$ and the choice $H_{i} \xi_{i}^{j}=\partial_{i} \theta^{(j)}$ our formula for the points of the surface coincides, when $N=2$, with the formula of [7], which, to our knowldege, is the first place where double wronskian appeared.

From a complete different point of view Nimmo considered in [11] what he called Darboux transformations for the two-dimensional Zakharov-Shabat/AKNS spectral problem, i.e. in the context of the Davey-Stewartson equations. In fact, this is intimately connected with two-dimensional conjugate nets [8]. His results are special cases of ours: first we have arbitrary dimension, not only $N=2$ as in [11]; second our partition for $N=2$, $M=m_{1}+m_{2}$ is more general than his, $M=2 m$; third we have computed not only the transformation for the potentials $\beta_{12}=q$ and $\beta_{21}=r$ and wave functions but also for the
adjoint wave function and for the corresponding points in the surface, that in this case, as we mentioned in the previous paragraph, can be found in [7].

The above remarks illustrate the fact that same problem has been tackled by different techniques coming from geometry on one the hand and soliton theory on the other, covering different aspects of it. In this paper we have extended the results of both approaches to higher dimensions, where the Darboux equations are no more trivial. In fact, from the soliton theory's point of view the Levy transformation for the Darboux system can be considered as an elementary Darboux transformations for the N-component Kadomtsev-Petviashvili hierarchy [3].

We have already mentioned that there exist other possibilities for iterations. In fact we have requested that there is at least one Levy transformation per direction. If this is not the case our results do not hold any more. However, one could get closed formulae where the β 's appear explicitly. In principle, one has N possible different types of formulae. But we are not going to consider this problem in this letter.

Acknowledgements

M.M. would like to thank A. Doliwa and P. M. Santini for useful conversations.

References

[1] M. Crum, Quart. J. Math. 6 (1955) 121.
[2] G. Darboux, Leçons sur la théorie générale des surfaces IV, Liv. VIII, Chapter XII, Chelsea, New York, 1972.
[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, J. Phys. Soc. Japan 50 (1981) 3806.
[4] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfces, Ginn \& Co., Boston, 1909.
[5] L.P. Eisenhart, Transformations of Surfaces, Chelsea, New York, 1962.
[6] N.C. Freeman, IMA J. Appl. Math. 32 (1984) 125.
[7] E.S. Hammond, Ann. Math. 22 (1920) 238.
[8] B.G. Konopelchenko, Phys. Lett. A 183 (1993) 153.
[9] B.G. Konopelchenko, W.K. Schief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations Preprint AM93/9, UNSW, 1993.
[10] L. Levy, J. l'École Polytechnique 56 (1886) 63.
[11] J.J.C. Nimmo, Inverse Problems 8 (1992) 219.
[12] O. Schreier, E. Sperner, Introduction to Modern Algebra and Matrix Theory, Chelsea, New York, 1951.
[13] G. Tzitzeica, C.R. Acad. Sci. Paris 156 (1913) 375.
[14] V.E. Zakharov, S.E. Manakov, Func. Anal. Appl. 19 (1985) 11.

[^0]: * Corresponding author. On leave of absence from Beijing Graduate School, CUMT, Beijing 100083, China. Fax: +86 1256 2587; e-mail: qpl@ciruelo.fis.ucm.es.Supported by Beca para estancias temporales de doctores y tecnólogos extranjeros en España: SB95-A01722297.
 ${ }^{1}$ Partially supported by CICYT: proyecto PB95-0401.

